NEW STRATEGY FOR THE SYNTHESIS OF KEY ANTHRACYCLINE PRECURSORS

John F. Honek, Michael L. Mancini and Bernard Belleau* Department of Chemistry, McGill University Montreal, Quebec

<u>Abstract</u>: A novel, practical approach to the synthesis of anthracyclines precursor <u>3</u> was developed. It centers on the use of the new ketimine synthon 7.

The clinical usefulness as antitumor agents¹ of the anthracycline antibiotics daunomycin (<u>1</u>) and adriamycin (<u>2</u>), obtained in low yield by fermentation², has stimulated much research on synthetic methods³ for the generation of these natural products. The dose-dependent cardiotoxicity⁴ of these agents imposes severe restrictions on their utilization in cancer treatment and as a result much interest is currently attached to synthetic methodology capable of generating new analogs potentially devoid of this limiting toxicity.

A synthetic strategy allowing for the ready preparation of a variety of these products and structural analogues from a common synthon would have considerable practical potential from the medicinal chemical point of view. We wish to describe such a new synthetic methodology based on an annulation reaction leading to the key α -hydroxyketone moiety from a substituted dialkyl arene. This new approach is exemplified by the synthesis of the known (\pm)-2-acetyl-5,8-dimethoxy-1,2,3,4-tetrahydro-2-naphthol (<u>3</u>), itself a key intermediate in several syntheses³ of the anthracyclines and their analogues.

Our retrosynthetic analysis (Scheme I) of key intermediate $\underline{3}$ led us to the novel theoretical fragmentation pattern shown as $\underline{5}$ which is formally equivalent to combining a biacetyl anion with an electrophilic benzyl carbon followed by nucleophilic attack of a biacetyl carbonyl by another adjacent benzyl carbon. In practice, this strategy calls for

the generation of an anionic biacetyl synthon suitable for mono-alkylation by an <u>ortho bis</u>halomethylarene followed by intramolecular ring closure through a Grignard-like intermediate. This meant that an intermediate of type $\underline{4}$ (X = halogen) may be obtainable from a biacetyl synthon and transformable to the desired key intermediate $\underline{3}$ by way of a Grignard reaction. After extensive experimentation⁵, the lithioenamine $\underline{8}$ was found suitable under selected conditions for the production in good yield of type $\underline{4}$ intermediates which in turn could be annulated to type 3 compounds also in good yield.

Thus, biacetyl was converted to monoketal $\underline{6}^{6,7}$ which yielded ketimine $\underline{7}^{7a,8}$ with cyclohexylamine (Scheme II). Reaction of $\underline{7}$ with LDA at -10° gave the desired $\underline{8}$. The <u>ortho bis</u>halogenomethyl fragment was readily prepared from 2,3-dimethylhydroquinone $\underline{10}^{7,9}$ (Scheme III). It was 0-methylated to $\underline{11}^{7,10}$ (95%) followed by bromination to $\underline{12}$ in the usual manner^{7,10,11}. Slow addition (30 min) of lithioenamine $\underline{8}$ (1 eq) to a THF solution of dibromide $\underline{12}$ at -78° followed by stirring for 3 h while allowing the temperature to reach 23° led to $\underline{13}^{7a}$ which was not isolated but hydrolyzed during work-up through the addition of oxalic acid (1.1 eq) followed by partitioning between CH₂Cl₂ and 0.1 N aqueous oxalic acid. The crude product was purified by flash chromatography to give ketone $\underline{14}^{7a}$ in 65-70% yields. Dibromide $\underline{12}$ (10-15%) and dialkylated material $\underline{15}^{7a}$ were also isolated. The intramolecular ring closure was best accomplished by slow addition of bromoketone 14 to a vigorously stirred THF suspension (argon) SCHEME III:

a) Reference 9; b) K_2CO_3 , Me_2SO_4 , reflux acetone, 95%; c) NBS, AIBN, $CCl_4\Delta$, 90%; d) LDA, THF, <u>8</u>; e) $(CO_2H)_2/H_2O$, 65-70%; f) Mg*, THF, RT/2N HCl, 70%.

of Mg¹² (3-4 eq). After stirring for 17 h, the mixture was hydrolyzed (2N HCl) to give after work-up the known key intermediate $3^{7,13a}$ in 70% yield.

The above methodology compares quite favorably as regards efficiency and expediency to other reported syntheses ¹³ of <u>3</u>. Problems associated with α -hydroxylation of an intermediate methyl ketone as well as formation of the latter are avoided by the incorporation of these functionalities in latent form in synthon <u>8</u>. The general ready availability of <u>ortho bis</u>-halomethylarene intermediates (where R₁-R₄ in <u>3</u> may form part of some complex structures) makes the above approach attractive for the generation of naturally occurring anthracyclines and especially nuclear analogues as we shall report later.

ACKNOWLEDGEMENTS

We are grateful to Drs. O. Mamer and J. Finkenbine for the mass spectral data, to NSERC of Canada and F.C.A.C. of Quebec for financial support.

REFERENCES

- a) R.H. Blum and S.K. Carter, Ann. Intern. Med., <u>80</u>, 249 (1974);
 b) S.T. Crooke and S.D. Reich, Eds., "Anthracyclines: Current Status and New Developments", Academic Press, Inc., New York, NY 1980.
- F. Arcamone, G. Cassinelli, G. Fantini, A. Grein, P. Orezzi, C. Pol and C. Spalla, Biotechnol. Bioeng., <u>11</u>, 1109 (1969).
- 3. Reviews of synthetic approaches to the anthracyclines:
 - i. T.R. Kelly in "Annual Reports in Medicinal Chemistry Volume 14", pp. 288-298, Hans-Jurgen Hess, Ed., Academic Press, Inc., New York, NY 1979.
 - T. Kametani and K. Fukumoto in "Medicinal Research Reviews", Vol. 1, No. 1, pp 23-72,
 G. de Stevens, Ed., John Wiley & Sons, Inc., New York, NY 1981.
- a) E.A. Lefrak, J. Pitha, S. Rosenheim and J.A. Gottlieb, "Cancer (Philadelphia)", <u>32</u>, 302 (1973);
 - b) L. Lenaz and J.A. Page, Cancer Treat. Rev., <u>3</u>, 111 (1976).
- 5. Utilization of 1 eq of lithium enolate of <u>6</u> at -78° C with α, α' -dibromo-o-xylene produced $\frac{16^{7a}}{\alpha}$ after acid hydrolysis. In our hands, other methods using triethanolamineborate¹⁴, α -tributylstannyl ketones¹⁵ and enol silyl ethers of <u>6</u> with ammonium fluorides¹⁶ were ineffective in obtaining 14.

- 6. D.A. Harris, J. Chem. Soc., 2247 (1950).
- 7. a) NMR, IR and mass spectra in complete agreement with the assigned structure;b) Identical in all respects to literature values.
- 8. B.p. 95-97°/0.3 mm.
- 9. J.L.G. Nilsson, H. Sievertsson, H. Selander, Acta Pharm. Suecica, 5, 215 (1968).
- 10. P. Mamalis, J. Green, S. Marcinkiewicz, D. McHale, J. Chem. Soc., 3350-57, 3358 (1959).
- 11. For benzylic bromination to occur, <u>11</u> must be free from mono-methyl ether or nuclear bromination may occur⁹.
- 12. a) Best results were obtained with magnesium prepared by the reduction of MgCl₂ with sodium naphthalide^{12b}. Other forms of magnesium or lithium metal were less effective.
 - b) R.T. Arnold, S.T. Kulenovic, Synthetic Communications, 7(3), 223-232 (1977).
- 13. a) T.H. Smith, A.N. Fujiwara, W.W. Lee, H.Y. Wu and D.W. Henry, J. Org. Chem., <u>42</u>, 3653 (1977);
 - b) A.R. Rao, V.H. Deshpande, N.L. Reddy, Tetrahedron Lett., 2661-2664 (1980);
 - c) S. Terashima, N. Tanno, K. Koga, Tetrahedron Lett., 2749-2752 (1980);
 - d) Reference 3.
- 14. M.W. Rathke and A. Lindert, Synthetic Communications, 8(1), 9-14 (1978).
- 15. Y. Odic and M. Pereyre, J. Organomet. Chem., <u>55</u>, 273-294 (1973).
- 16. I. Kuwajima, E. Nakamura and M. Shimizu, J. Am. Chem. Soc., <u>104</u>, 1025-1030 (1982).

(Received in USA 21 October 1982)